Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567815

RESUMO

In cattle, lateral asymmetry affects ovarian function and embryonic sex, but the underlying molecular mechanisms remain unknown. The plasma metabolome of recipients serves to predict pregnancy after embryo transfer (ET). Thus, the aim of this study was to investigate whether the plasma metabolome exhibits distinct lateral patterns according to the sex of the fetus carried by the recipient and the active ovary side (AOS), i.e., the right ovary (RO) or the left ovary (LO). We analyzed the plasma of synchronized recipients by 1H+NMR on day 0 (estrus, n = 366) and day 7 (hours prior to ET; n = 367). Thereafter, a subset of samples from recipients that calved female (n = 50) or male (n = 69) was used to test the effects of embryonic sex and laterality on pregnancy establishment. Within the RO, the sex ratio of pregnancies carried was biased toward males. Significant differences (P < 0.05) in metabolite levels were evaluated based on the day of blood sample collection (days 0, 7 and day 7/day 0 ratio) using mixed generalized models for metabolite concentration. The most striking differences in metabolite concentrations were associated with the RO, both obtained by multivariate (OPLS-DA) and univariate (mixed generalized) analyses, mainly with metabolites measured on day 0. The metabolites consistently identified through the OPLS-DA with a higher variable importance in projection score, which allowed for discrimination between male fetus- and female fetus-carrying recipients, were hippuric acid, l-phenylalanine, and propionic acid. The concentrations of hydroxyisobutyric acid, propionic acid, l-lysine, methylhistidine, and hippuric acid were lowest when male fetuses were carried, in particular when the RO acted as AOS. No pathways were significantly regulated according to the AOS. In contrast, six pathways were found enriched for calf sex in the day 0 dataset, three for day 7, and nine for day 7/day 0 ratio. However, when the AOS was the right, 20 pathways were regulated on day 0, 8 on day 7, and 13 within the day 7/day 0 ratio, most of which were related to amino acid metabolism, with phenylalanine, tyrosine, and tryptophan biosynthesis and phenylalanine metabolism pathways being identified throughout. Our study shows that certain metabolites in the recipient plasma are influenced by the AOS and can predict the likelihood of carrying male or female embryos to term, suggesting that maternal metabolism prior to or at the time of ET could favor the implantation and/or development of either male or female embryos.


This study explored how the active ovary side (AOS, i.e., left or right) and the sex of the calf carried by the recipient relate to the plasma metabolome in blood. For this purpose, we analyzed blood samples from heifers at two specific times: the day of the estrus and the day of the embryo transfer. We found significant differences in the sex ratio of pregnancies carried in the right ovary, and in the levels of certain metabolites depending on whether the active ovary was on the right or left and whether the calf was male or female. As examples, the concentrations of hydroxyisobutyric acid, propionic acid, l-lysine, methylhistidine, and hippuric acid were lowest when male calves were carried, in particular when the right ovary was active. Interestingly, the calf sex also influenced certain metabolic pathways, especially in the right AOS, several of them related to amino acid metabolism. However, no significant metabolic pathway changes were observed based solely on which ovary was active. Overall, the study suggests that the metabolism of the recipient, influenced by the AOS, might play a role in the successful implantation and development of embryos of a certain sex. This insight could potentially help to predict and improve pregnancy outcomes in cattle through embryo transfer techniques.


Assuntos
Transferência Embrionária , Hipuratos , Ovário , Propionatos , Masculino , Gravidez , Bovinos , Feminino , Animais , Taxa de Gravidez , Transferência Embrionária/veterinária , Metaboloma , Fenilalanina
2.
Front Physiol ; 15: 1331098, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348224

RESUMO

Background: During the process of elongation, the embryo increases in size within the uterus, while the extra-embryonic tissues (EETs) develop and differentiate in preparation for implantation. As it grows, the ovoid embryo transforms into a tubular form first and then a filamentous form. This process is directed by numerous genes and pathways, the expression of which may be altered in the case of developmental irregularities such as when the conceptus is shorter than expected or when the embryo develops after splitting. In bovines, efforts to understand the molecular basis of elongation have employed trophoblastic vesicles (TVs)-short tubular EET pieces that lack an embryo-which also elongate in vivo. To date, however, we lack molecular analyses of TVs at the ovoid or filamentous stages that might shed light on the expression changes involved. Methods: Following in vivo development, we collected bovine conceptuses from the ovoid (D12) to filamentous stages (D18), sectioned them into small pieces with or without their embryonic disc (ED), and then, transferred them to a receptive bovine uterus to assess their elongation abilities. We also grew spherical blastocysts in vitro up to D8 and subjected them to the same treatment. Then, we assessed the differences in gene expression between different samples and fully elongating controls at different stages of elongation using a bovine array (10 K) and an extended qPCR array comprising 224 genes across 24 pathways. Results: In vivo, TVs elongated more or less depending on the stage at which they had been created and the time spent in utero. Their daily elongation rates differed from control EET, with the rates of TVs sometimes resembling those of earlier-stage EET. Overall, the molecular signatures of TVs followed a similar developmental trajectory as intact EET from D12-D18. However, within each stage, TVs and intact EET displayed distinct expression dynamics, some of which were shared with other short epithelial models. Conclusion: Differences between TVs and EET likely result from multiple factors, including a reduction in the length and signaling capabilities of TVs, delayed elongation from inadequate uterine signals, and modified crosstalk between the conceptus and the uterus. These findings confirm that close coordination between uterine, embryonic, and extra-embryonic tissues is required to orchestrate proper elongation and, based on the partial differentiation observed, raise questions about the presence/absence of certain developmental cues or even their asynchronies.

3.
Theriogenology ; 187: 102-111, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561465

RESUMO

Docosahexaenoic acid (DHA) is an n-3 polyunsaturated fatty acid (PUFA) that improves fertility by increasing membrane fluidity. Moreover, embryos produced by donor females supplied with n-3 PUFA did not show any difference in terms of the lipid profile after 7 days of culture. The present study aimed to investigate the effects of DHA (20 and 100 µM) coupled with carnosine (5 mg/mL), an antioxidant, during oocyte maturation and embryo development on the developmental and cryosurvival rates and the number of pluripotent cells. Free fatty acid receptor-4 (FFAR4), which is able to bind DHA, was visualised by immunostaining. The addition of DHA in the in vitro development (IVD) medium decreased the percentage of pluripotent SOX2 positive cells compared with the control (8.4% vs. 10.9%) without affecting the number of cells (196.7 vs. 191.6 cells) or the developmental (20.9% vs. 23.9% blastocysts rate on D7) and cryosurvival rates (86.3% vs 86.2%). Such a decrease in pluripotent cells, relevant to the differentiation of the first lineage within the inner cell mass, represents an improvement in the embryo quality. On the contrary, embryos without any pluripotent SOX2-positive cells would not be able to achieve gestation. Future studies should follow up these results by carrying out embryo transfers to assess the beneficial effects of DHA supplementation.


Assuntos
Ácidos Docosa-Hexaenoicos , Técnicas de Maturação in Vitro de Oócitos , Animais , Blastocisto , Bovinos , Criopreservação/veterinária , Ácidos Docosa-Hexaenoicos/farmacologia , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário , Feminino , Fertilização In Vitro/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos
4.
Biol Reprod ; 106(3): 597-612, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34718415

RESUMO

Embryo lipid profile is affected by in vitro culture conditions that lead to an increase in lipids. Efforts have been made to optimize embryo lipid composition as it is associated with their quality. The objective of this study was to evaluate whether the diet supplementation of donor cows (n-3 or n-6 polyunsaturated fatty acids), or the slow freezing protocols (ethylene glycol sucrose vs. glycerol-trehalose), or the physiological stage of the donor (nulliparous heifers vs. primiparous lactating cows) may impact the bovine embryo lipid profile. Lipid extracts of 97 embryos were individually analyzed by liquid chromatography-high resolution mass spectrometry, highlighting 246 lipids, including 85% being overabundant in cow embryos compared to heifer embryos. Among 105 differential lipids, 72 were overabundant after ethylene glycol sucrose protocol, including a single glycerophosphate PA(32:1) representing 27.3% of the significantly modulated lipids, suggesting that it is degraded when glycerol-trehalose protocol is used. No lipids were different according to the n-3 or n-6 supplementation of the donor cows. In conclusion, the embryonic lipid profile was mainly affected by the physiological stage of the donors and the slow freezing protocols. The overabundance of lipids in lactating cow embryos and the resulting lower quality of these embryos are consistent with the lower pregnancy rate observed in cows compared to heifers. Unlike glycerol-trehalose protocol, ethylene glycol sucrose freezing allowed to preserve glycerophospholipids, potentially improving the slow freezing of in vitro-produced embryos. Further studies are required to modulate embryo quality and freezability by modulating the lipidome and by integrating all stages of embryonic production.


Assuntos
Criopreservação , Lactação , Animais , Blastocisto/fisiologia , Bovinos , Criopreservação/métodos , Criopreservação/veterinária , Etilenoglicóis , Feminino , Congelamento , Glicerol , Lipídeos , Gravidez , Sacarose , Trealose
5.
Sci Rep ; 11(1): 11618, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078963

RESUMO

Currently, in vitro embryo production (IVP) is successfully commercially applied in cattle. However, the high sensitivity of embryos to cryopreservation in comparison to in vivo (IVD) embryos slows the dissemination of this biotechnology. Reduced cryotolerance is frequently associated with lipid accumulation in the cytoplasm mainly due to in vitro culture conditions. The objective of this study was to evaluate the lipid composition of biopsied and sexed embryos, produced either in vivo or in vitro from the same Holstein heifers before and after a slow freezing protocol. Lipid extracts were analysed by liquid chromatography-high resolution mass spectrometry, which enabled the detection of 496 features. Our results highlighted a lipid enrichment of IVP embryos in triglycerides and oxidised glycerophospholipids and a reduced abundance in glycerophospholipids. The slow freezing process affected the lipid profiles of IVP and IVD embryos similarly. Lysophosphatidylcholine content was reduced when embryos were frozen/thawed. In conclusion, the embryonic lipid profile is impacted by IVP and slow freezing protocols but not by sex. Lysophosphatidylcholine seemed highly sensitive to cryopreservation and might contribute to explain the lower quality of frozen embryos. Further studies are required to improve embryo freezability by modulating the lipidome.


Assuntos
Blastocisto/química , Criopreservação/veterinária , Glicerofosfolipídeos/isolamento & purificação , Lipidômica/métodos , Lisofosfatidilcolinas/isolamento & purificação , Triglicerídeos/isolamento & purificação , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Bovinos , Criopreservação/métodos , Técnicas de Cultura Embrionária , Feminino , Fertilização In Vitro , Masculino , Oxirredução , Análise de Componente Principal , Fatores Sexuais
6.
Reprod Biol ; 21(3): 100512, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33991764

RESUMO

The metabolites in the oviduct fluid (OF) of both oviducts were analyzed by proton nuclear magnetic resonance (1H-NMR) in Holstein heifers on day 3 after synchronized estrus. Twenty-six metabolites were quantified, among which lactate, glycine and myoinositol were the most abundant. Six metabolites including glycine and myoinositol varied in amount according to the proximity to the corpus luteum. Glucose and histidine were among the most variable metabolites among heifers while threonine and lactate were among the most stable ones, suggesting different mechanisms of homeostasis in the OF.


Assuntos
Líquidos Corporais/química , Líquidos Corporais/fisiologia , Bovinos/fisiologia , Estro/fisiologia , Tubas Uterinas/fisiologia , Metabolômica , Animais , Feminino
7.
Int J Mol Sci ; 21(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727074

RESUMO

Oviduct fluid extracellular vesicles (oEVs) have been proposed as bringing key molecules to the early developing embryo. In order to evaluate the changes induced by oEVs on embryo phospholipids, fresh bovine blastocysts developed in vitro in the presence or absence of oEVs were analyzed by intact cell MALDI-TOF (Matrix assisted laser desorption ionization-Time of flight) mass spectrometry (ICM-MS). The development rates, cryotolerance, and total cell number of blastocysts were also evaluated. The exposure to oEVs did not affect blastocyst yield or cryotolerance but modified the phospholipid content of blastocysts with specific changes before and after blastocoel expansion. The annotation of differential peaks due to oEV exposure evidenced a shift of embryo phospholipids toward more abundant phosphatidylcholines (PC), phosphatidylethanolamines (PE), and sphingomyelins (SM) with long-chain fatty acids. The lipidomic profiling of oEVs showed that 100% and 33% of the overabundant masses in blastocysts and expanded blastocysts, respectively, were also present in oEVs. In conclusion, this study provides the first analysis of the embryo lipidome regulated by oEVs. Exposure to oEVs induced significant changes in the phospholipid composition of resulting embryos, probably mediated by the incorporation of oEV-phospholipids into embryo membranes and by the modulation of the embryonic lipid metabolism by oEV molecular cargos.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário , Tubas Uterinas/metabolismo , Fosfolipídeos/metabolismo , Animais , Bovinos , Feminino
8.
Biol Reprod ; 102(3): 730-739, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31786596

RESUMO

Over the last decades, fertility of dairy cows has declined due to selection strategies focusing on milk yield. To study the effect of genetic merit for fertility on the proteome of the bovine uterine luminal fluid, Holstein heifers with low- and two groups of heifers with high-fertility index (high-fertility Holstein and Montbéliarde) were investigated. To focus on the maternal effect, heifers from all groups were synchronized and received on Day 7 high-quality embryos. Uterine luminal fluid from Day 19 pregnant heifers was analyzed in a holistic proteomic approach using nano-LC-MS/MS analysis combined with a label-free quantification approach. In total, 1737 proteins were identified, of which 597 differed significantly in abundance between the three groups. The vast majority of proteome differences was found comparing both high-fertility groups to the low-fertility Holstein group, showing that the genetic predisposition for fertility is prevalent regarding the uterine luminal fluid proteome. Evaluation of this dataset using bioinformatic tools revealed an assignment of higher abundant proteins in low-fertility Holstein to several metabolic processes, such as vitamin metabolic process, which comprises folate receptor alpha (FOLR1) and retinol-binding protein, indicating an involvement of disturbed metabolic processes in decreased fertility. Moreover, immune system-related proteins - lactotransferrin and chromogranin A - were enriched in low-fertility cows together with interferon tau 3 h and interferon tau-2. Our results indicate that the genetic merit for fertility leads to substantial quantitative differences at the level of proteins in uterine fluid of pregnant animals, thus altering the microenvironment for the early conceptus.


Assuntos
Fertilidade/fisiologia , Proteoma/metabolismo , Útero/metabolismo , Animais , Bovinos , Cromogranina A/metabolismo , Biologia Computacional , Feminino , Receptor 1 de Folato/metabolismo , Lactoferrina/metabolismo , Proteômica , Espectrometria de Massas em Tandem
9.
Mol Reprod Dev ; 86(6): 661-672, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30950150

RESUMO

The objective of this study was to evaluate the effect of progesterone (P4), estradiol (E2), and cortisol (CO) at intraoviductal concentrations on bovine embryo development and quality in vitro. After fertilization of in vitro matured oocytes, zygotes were cultured for 8 days in synthetic oviductal fluid, supplemented with 55 ng/ml P4, 120 pg/ml E2, 40 ng/ml CO, or their combination (ALL). Control embryos were cultured with vehicle (0.1% ethanol). Exposure to steroids did not affect the embryo developmental rate nor the mean number of cells per blastocyst. However, at 24 hr after vitrification-warming, exposure to P4 improved the proportion of embryos that re-expanded and were viable while exposure to CO decreased the proportion of viable embryos. By intact cell MALDI-TOF mass spectrometry, a total of 242 phospholipid masses of 400-1000 m/z were detected from individual fresh blastocysts. Exposure to ALL induced the highest and most specific changes in embryo phospholipids, followed by P4, E2, and CO. In particular, the m/z 546.3 and 546.4 attributed to lysophosphatidylcholines were found less abundant after exposure to P4. In conclusion, exposure of bovine embryos to intraoviductal concentrations of steroid hormones did not affect in vitro development but changed blastocyst quality in terms of cryotolerance and phospholipid profiles.


Assuntos
Blastocisto/metabolismo , Criopreservação , Desenvolvimento Embrionário , Hormônios Esteroides Gonadais/metabolismo , Oviductos/metabolismo , Animais , Bovinos , Técnicas de Cultura Embrionária , Feminino , Fertilização In Vitro , Técnicas de Maturação in Vitro de Oócitos , Técnicas de Cultura de Órgãos
10.
Int J Mol Sci ; 20(24)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888194

RESUMO

Oviductal extracellular vesicles (oEVs) have been proposed as key modulators of gamete/embryo maternal interactions. The aim of this study was to examine the metabolite content of oEVs and its regulation across the estrous cycle in cattle. Oviductal EVs were isolated from bovine oviducts ipsilateral and contralateral to ovulation at four stages of the estrous cycle (post-ovulatory stage, early and late luteal phases, and pre-ovulatory stage). The metabolomic profiling of EVs was performed by proton nuclear magnetic resonance spectroscopy (NMR). NMR identified 22 metabolites in oEVs, among which 15 were quantified. Lactate, myoinositol, and glycine were the most abundant metabolites throughout the estrous cycle. The side relative to ovulation had no effect on the oEVs' metabolite concentrations. However, levels of glucose-1-phosphate and maltose were greatly affected by the cycle stage, showing up to 100-fold higher levels at the luteal phase than at the peri-ovulatory phases. In contrast, levels of methionine were significantly higher at peri-ovulatory phases than at the late-luteal phase. Quantitative enrichment analyses of oEV-metabolites across the cycle evidenced several significantly regulated metabolic pathways related to sucrose, glucose, and lactose metabolism. This study provides the first metabolomic characterization of oEVs, increasing our understanding of the potential role of oEVs in promoting fertilization and early embryo development.


Assuntos
Ciclo Estral/metabolismo , Vesículas Extracelulares/metabolismo , Metabolômica , Oviductos/metabolismo , Animais , Bovinos , Vesículas Extracelulares/ultraestrutura , Feminino , Metaboloma , Ovulação , Análise de Componente Principal
11.
J Dairy Sci ; 100(10): 8176-8187, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28803020

RESUMO

A candidate mutation in the sex hormone binding globulin gene was proposed in 2013 to be responsible for the MH1 recessive embryonic lethal locus segregating in the Montbéliarde breed. In this follow-up study, we excluded this candidate variant because healthy homozygous carriers were observed in large-scale genotyping data generated in the framework of the genomic selection program. We fine mapped the MH1 locus in a 702-kb interval and analyzed genome sequence data from the 1,000 bull genomes project and 54 Montbéliarde bulls (including 14 carriers and 40 noncarriers). We report the identification of a strong candidate mutation in the gene encoding phosphoribosylformylglycinamidine synthase (PFAS), a protein involved in de novo purine synthesis. This mutation, located in a class I glutamine amidotransferase-like domain, results in the substitution of an arginine residue that is entirely conserved among eukaryotes by a cysteine (p.R1205C). No homozygote for the cysteine-encoding allele was observed in a large population of more than 25,000 individuals despite a 6.7% allelic frequency and 122 expected homozygotes under neutrality assumption. Genotyping of 18 embryos collected from heterozygous parents as well as analysis on nonreturn rates suggested that most homozygous carriers died between 7 and 35 d postinsemination. The identification of this strong candidate mutation will enable the accurate testing of the reproducers and the efficient selection against this lethal recessive embryonic defect in the Montbéliarde breed.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Genótipo , Haplótipos , Mutação de Sentido Incorreto , Animais , Cruzamento , Bovinos , Seguimentos , Masculino , Especificidade da Espécie
12.
Reprod Fertil Dev ; 29(9): 1868-1881, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27851888

RESUMO

In in vitro-produced (IVP) bovine embryos, a burst in transcriptional activation of the embryonic genome (EGA) occurs at the 8-16-cell stage. To examine transcriptional regulation prior to EGA, notably in response to heat stress, we asked (1) whether the spontaneous expression of a luciferase transgene that is driven by the minimal mouse heat-shock protein 1b (hspa1b) gene promoter paralleled that of HSPA1A during EGA in IVP bovine embryo and (2) whether expression of the endogenous heat-inducible iHSPA group member HSPA1A gene and the hspa1b/luciferase transgene were induced by heat stress (HS) prior to EGA. Using two culture systems, we showed that luciferase activity levels rose during the 40-h long EGA-associated cell cycle. In contrast, iHSPA proteins were abundant in matured oocytes and in blastomeres from the two-cell to the 16-cell stages. However, normalised results detected a rise in the level of HSPA1A and luciferase mRNA during EGA, when transcription was required for their protein expression. Prior to EGA, HS-induced premature luciferase activity and transgene expression were clearly inhibited. We could not, however, establish whether this was also true for HSPA1A expression because of the decay of the abundant maternal transcripts prior to EGA. In bovine embryos, heat-induced expression of hspa1b/luciferase, and most likely of HSPA1A, was therefore strictly dependent on EGA. The level of the heat-shock transcription factor 1 molecules that were found in cell nuclei during embryonic development correlated better with the embryo's capacity for heat-shock response than with EGA-associated gene expression.


Assuntos
Blastocisto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP70/genética , Resposta ao Choque Térmico/genética , Animais , Bovinos , Técnicas de Cultura Embrionária/veterinária , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta , Gravidez
13.
Sci Rep ; 6: 38869, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27958319

RESUMO

Cloning enables the generation of both clinically normal and pathological individuals from the same donor cells, and may therefore be a DNA sequence-independent driver of phenotypic variability. We took advantage of cattle clones with identical genotypes but different developmental abilities to investigate the role of epigenetic factors in perinatal mortality, a complex trait with increasing prevalence in dairy cattle. We studied livers from pathological clones dying during the perinatal period, clinically normal adult clones with the same genotypes as perinatal clones and conventional age-matched controls. The livers from deceased perinatal clones displayed histological lesions, modifications to quantitative histomorphometric and metabolic parameters such as glycogen storage and fatty acid composition, and an absence of birth-induced maturation. In a genome-wide epigenetic analysis, we identified DNA methylation patterns underlying these phenotypic alterations and targeting genes relevant to liver metabolism, including the type 2 diabetes gene TCF7L2. The adult clones were devoid of major phenotypic and epigenetic abnormalities in the liver, ruling out the effects of genotype on the phenotype observed. These results thus provide the first demonstration of a genome-wide association between DNA methylation and perinatal mortality in cattle, and highlight epigenetics as a driving force for phenotypic variability in farmed animals.


Assuntos
Doenças dos Bovinos/genética , Doenças dos Bovinos/patologia , Metilação de DNA , Epigênese Genética , Fígado/patologia , Animais , Bovinos , Doenças dos Bovinos/mortalidade , Clonagem de Organismos , Modelos Animais de Doenças , Metabolismo Energético , Ácidos Graxos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fígado/metabolismo , Masculino , Fenótipo , Estresse Fisiológico
14.
Proc Natl Acad Sci U S A ; 113(51): 14492-14501, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27940919

RESUMO

A major unresolved issue in the cloning of mammals by somatic cell nuclear transfer (SCNT) is the mechanism by which the process fails after embryos are transferred to the uterus of recipients before or during the implantation window. We investigated this problem by using RNA sequencing (RNA-seq) to compare the transcriptomes in cattle conceptuses produced by SCNT and artificial insemination (AI) at day (d) 18 (preimplantation) and d 34 (postimplantation) of gestation. In addition, endometrium was profiled to identify the communication pathways that might be affected by the presence of a cloned conceptus, ultimately leading to mortality before or during the implantation window. At d 18, the effects on the transcriptome associated with SCNT were massive, involving more than 5,000 differentially expressed genes (DEGs). Among them are 121 genes that have embryonic lethal phenotypes in mice, cause defects in trophoblast and placental development, and/or affect conceptus survival in mice. In endometria at d 18, <0.4% of expressed genes were affected by the presence of a cloned conceptus, whereas at d 34, ∼36% and <0.7% of genes were differentially expressed in intercaruncular and caruncular tissues, respectively. Functional analysis of DEGs in placental and endometrial tissues suggests a major disruption of signaling between the cloned conceptus and the endometrium, particularly the intercaruncular tissue. Our results support a "bottleneck" model for cloned conceptus survival during the periimplantation period determined by gene expression levels in extraembryonic tissues and the endometrial response to altered signaling from clones.


Assuntos
Endométrio/metabolismo , Placenta/metabolismo , Prenhez , Transdução de Sinais , Transcriptoma , Animais , Bovinos , Clonagem de Organismos , Implantação do Embrião , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Inseminação Artificial , Técnicas de Transferência Nuclear , Placentação , Gravidez , Fatores de Tempo , Trofoblastos/metabolismo , Útero/metabolismo
15.
Curr Biol ; 24(4): 404-8, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24485832

RESUMO

The origin of sex reversal in XX goats homozygous for the polled intersex syndrome (PIS) mutation was unclear because of the complexity of the mutation that affects the transcription of both FOXL2 and several long noncoding RNAs (lncRNAs). Accumulating evidence suggested that FOXL2 could be the sole gene of the PIS locus responsible for XX sex reversal, the lncRNAs being involved in transcriptional regulation of FOXL2. In this study, using zinc-finger nuclease-directed mutagenesis, we generated several fetuses, of which one XX individual bears biallelic mutations of FOXL2. Our analysis demonstrates that FOXL2 loss of function dissociated from loss of lncRNA expression is sufficient to cause an XX female-to-male sex reversal in the goat model and, as in the mouse model, an agenesis of eyelids. Both developmental defects were reproduced in two newborn animals cloned from the XX FOXL2(-/-) fibroblasts. These results therefore identify FOXL2 as a bona fide female sex-determining gene in the goat. They also highlight a stage-dependent role of FOXL2 in the ovary, different between goats and mice, being important for fetal development in the former but for postnatal maintenance in the latter.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Cabras/metabolismo , Processos de Determinação Sexual , Animais , Feminino , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Cabras/embriologia , Cabras/genética , Masculino , Ovário/embriologia , Ovário/metabolismo , Testículo/embriologia , Testículo/metabolismo , Cromossomo X , Cromossomo Y
16.
Mol Reprod Dev ; 80(12): 977-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038527

RESUMO

We determined if somatic cell nuclear transfer (SCNT) cloning is associated with WNT-related gene expression in cattle development, and if the expression of genes in the WNT pathway changes during the peri-implantation period. Extra-embryonic and endometrial tissues were collected at gestation days 18 and 34 (d18, d34). WNT5A, FZD4, FZD5, LRP5, CTNNB1, GNAI2, KDM1A, BCL2L1, and SFRP1 transcripts were localized in extra-embryonic tissue, whereas SFRP1 and DKK1 were localized in the endometrium. There were no differences in the localization of these transcripts in extra-embryonic tissue or endometrium from SCNT or artificial insemination (AI) pregnancies. Expression levels of WNT5A were 11-fold greater in the allantois of SCNT than AI samples. In the trophoblast, expression of WNT5A, FZD5, CTNNB1, and DKK1 increased significantly from d18 to d34, whereas expression of KDM1A and SFRP1 decreased, indicating that implantation is associated with major changes in WNT signaling. SCNT was associated with altered WNT5A expression in trophoblasts, with levels increasing 2.3-fold more in AI than SCNT conceptuses from d18 to d34. In the allantois, expression of WNT5A increased 6.3-fold more in SCNT than AI conceptuses from d18 to d34. Endometrial tissue expression levels of the genes tested did not differ between AI or SCNT pregnancies, although expression of individual genes showed variation across developmental stages. Our results demonstrate that SCNT is associated with altered expression of specific WNT-related genes in extra-embryonic tissue in a time- and tissue-specific manner. The pattern of gene expression in the WNT pathway suggests that noncanonical WNT signal transduction is important for implantation of cattle conceptuses.


Assuntos
Implantação do Embrião/genética , Endométrio/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Transferência Nuclear , Via de Sinalização Wnt/genética , Alantoide/metabolismo , Animais , Blastocisto/fisiologia , Bovinos , Clonagem de Organismos , Endométrio/metabolismo , Feminino , Expressão Gênica , Inseminação Artificial , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Wnt/biossíntese , Proteínas Wnt/metabolismo
17.
PLoS One ; 8(5): e63512, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717440

RESUMO

Despite massive research efforts, the molecular etiology of bovine polledness and the developmental pathways involved in horn ontogenesis are still poorly understood. In a recent article, we provided evidence for the existence of at least two different alleles at the Polled locus and identified candidate mutations for each of them. None of these mutations was located in known coding or regulatory regions, thus adding to the complexity of understanding the molecular basis of polledness. We confirm previous results here and exhaustively identify the causative mutation for the Celtic allele (PC) and four candidate mutations for the Friesian allele (PF). We describe a previously unreported eyelash-and-eyelid phenotype associated with regular polledness, and present unique histological and gene expression data on bovine horn bud differentiation in fetuses affected by three different horn defect syndromes, as well as in wild-type controls. We propose the ectopic expression of a lincRNA in PC/p horn buds as a probable cause of horn bud agenesis. In addition, we provide evidence for an involvement of OLIG2, FOXL2 and RXFP2 in horn bud differentiation, and draw a first link between bovine, ovine and caprine Polled loci. Our results represent a first and important step in understanding the genetic pathways and key process involved in horn bud differentiation in Bovidae.


Assuntos
Bovinos/crescimento & desenvolvimento , Cornos/crescimento & desenvolvimento , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Bovinos/genética , Mapeamento Cromossômico/métodos , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Variação Genética/genética , Genótipo , Cabras/genética , Cabras/crescimento & desenvolvimento , Mutação/genética , Fenótipo , Receptores Acoplados a Proteínas G/genética , Ovinos/genética , Ovinos/crescimento & desenvolvimento
18.
PLoS One ; 7(11): e49084, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23152852

RESUMO

Polled and Multisystemic Syndrome (PMS) is a novel developmental disorder occurring in the progeny of a single bull. Its clinical spectrum includes polledness (complete agenesis of horns), facial dysmorphism, growth delay, chronic diarrhea, premature ovarian failure, and variable neurological and cardiac anomalies. PMS is also characterized by a deviation of the sex-ratio, suggesting male lethality during pregnancy. Using Mendelian error mapping and whole-genome sequencing, we identified a 3.7 Mb deletion on the paternal bovine chromosome 2 encompassing ARHGAP15, GTDC1 and ZEB2 genes. We then produced control and affected 90-day old fetuses to characterize this syndrome by histological and expression analyses. Compared to wild type individuals, affected animals showed a decreased expression of the three deleted genes. Based on a comparison with human Mowat-Wilson syndrome, we suggest that deletion of ZEB2, is responsible for most of the effects of the mutation. Finally sperm-FISH, embryo genotyping and analysis of reproduction records confirmed somatic mosaicism in the founder bull and male-specific lethality during the first third of gestation. In conclusion, we identified a novel locus involved in bovid horn ontogenesis and suggest that epithelial-to-mesenchymal transition plays a critical role in horn bud differentiation. We also provide new insights into the pathogenicity of ZEB2 loss of heterozygosity in bovine and humans and describe the first case of male-specific lethality associated with an autosomal locus in a non-murine mammalian species. This result sets PMS as a unique model to study sex-specific gene expression/regulation.


Assuntos
Anormalidades Múltiplas/veterinária , Pareamento de Bases/genética , Doenças dos Bovinos/genética , Mosaicismo , Proteínas Repressoras/genética , Deleção de Sequência/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Animais , Bovinos , Doenças dos Bovinos/patologia , Mapeamento Cromossômico , Feminino , Feto/anormalidades , Feto/patologia , Cornos/patologia , Humanos , Padrões de Herança/genética , Masculino , Mutação/genética , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/metabolismo , Pele/patologia , Síndrome
19.
PLoS One ; 7(6): e38309, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701625

RESUMO

Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each); one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular "uncoupling". Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538), we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity) and subsequent pregnancy loss. Finally, because it alters re-differentiation processes in vivo, SCNT reprogramming highlights temporally and spatially restricted interactions among cells and tissues in a unique way.


Assuntos
Blastocisto/fisiologia , Comunicação Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Membranas Extraembrionárias/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Técnicas de Transferência Nuclear/veterinária , Animais , Estudos de Casos e Controles , Bovinos , Diferenciação Celular/fisiologia , Primers do DNA/genética , Transferência Embrionária/veterinária , Membranas Extraembrionárias/ultraestrutura , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Hibridização In Situ/veterinária , Microscopia Eletrônica de Varredura/veterinária , Técnicas de Transferência Nuclear/efeitos adversos , Gravidez , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Análise para Determinação do Sexo/veterinária
20.
PLoS One ; 7(3): e34110, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479535

RESUMO

Pluripotency genes are implicated in mouse embryonic genome activation (EGA) and pluripotent lineage specification. Moreover, their expression levels have been correlated with embryonic term development. In bovine, however, little information is available about dynamics of pluripotency genes during these processes. In this study, we charted quantitative and/or qualitative spatio-temporal expression patterns of transcripts and proteins of pluripotency genes (OCT4, SOX2 and NANOG) and mRNA levels of some of their downstream targets in bovine oocytes and early embryos. Furthermore, to correlate expression patterns of these genes with term developmental potential, we used cloned embryos, having similar in vitro but different full term development rates. Our findings affirm: firstly, the core triad of pluripotency genes is probably not implicated in bovine EGA since their proteins were not detected during pre-EGA phase, despite the transcripts for OCT4 and SOX2 were present. Secondly, an earlier ICM specification of transcripts and proteins of SOX2 and NANOG makes them pertinent candidates of bovine pluripotent lineage specification than OCT4. Thirdly, embryos with low term development potential have higher transcription rates; nevertheless, precarious balance between pluripotency genes is maintained. This balance presages normal in vitro development but, probably higher transcription rate disturbs it at later stage that abrogates term development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genoma , Células-Tronco Pluripotentes/citologia , Animais , Bovinos , Linhagem da Célula , Clonagem de Organismos , Fertilização In Vitro , Fibroblastos/citologia , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Camundongos , Proteína Homeobox Nanog , Técnicas de Transferência Nuclear , Fator 3 de Transcrição de Octâmero/biossíntese , Oócitos/citologia , Fatores de Transcrição SOXB1/biossíntese , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...